All-ceramic Fixed Partial Denture: Clinical Considerations in Case Selection

Abstract

For esthetic reasons, all-ceramic fixed partial dentures are increasingly being used for partially edentulous patients. This article discusses criteria for choosing all-ceramic fixed partial dentures according to clinical studies. The development and clinical considerations for treating patients with these restorations are described.

Keywords: all-ceramic fixed partial dentures, esthetics, zirconia
Table 1 Features of all-ceramic systems for fixed partial denture

<table>
<thead>
<tr>
<th>System (manufacturer)</th>
<th>Core material</th>
<th>Flexural strength (MPa)</th>
<th>Fracture toughness (MPa/m^1/2)</th>
<th>Connector surface area (mm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empress II (Ivoclar North America, Amherst, NY)</td>
<td>Lithium disilicate</td>
<td>300-400</td>
<td>2.8-3.5</td>
<td>12-20</td>
</tr>
<tr>
<td>In-Ceram Alumina (Vita Zahnfabrik, Bad Sackingen, Germany)</td>
<td>Glass-infiltrated alumina</td>
<td>256-600</td>
<td>3.1-4.61</td>
<td>12</td>
</tr>
<tr>
<td>In-Ceram Zirconia (Vita Zahnfabrik, Bad Sackingen, Germany)</td>
<td>Glass-infiltrated alumina with 35% partially stabilized zirconia</td>
<td>421-800</td>
<td>6-8</td>
<td>12-20</td>
</tr>
<tr>
<td>Procera All-Ceram Bridges (Nobel Biocare Goteborg, Sweden)</td>
<td>Densely sintered high-purity alumina</td>
<td>487-699</td>
<td>4.48-6</td>
<td>6</td>
</tr>
<tr>
<td>Cercon (Dentsply, Burlington, NJ)</td>
<td>Y-TZP</td>
<td>900-1200</td>
<td>9.10</td>
<td>7-11</td>
</tr>
<tr>
<td>DCS-President DC-Zircon (Dentsply Austenal, York, Pa)</td>
<td>Y-TZP</td>
<td>900-1200</td>
<td>9.10</td>
<td>16</td>
</tr>
<tr>
<td>Lava (3M ESPE, St. Paul, Minn)</td>
<td>Y-TZP</td>
<td>900-1200</td>
<td>9.10</td>
<td>9</td>
</tr>
</tbody>
</table>

(continued)

(Adapted from Raigrodski AJ. 2004)
The study compared several ceramic systems in terms of fracture toughness, including Glass-Infiltrated Alumina with Partially Stabilized Zirconia and Infiltrated Alumina with Partially Stabilized Zirconia. The results showed that the fracture toughness of these materials varied significantly, with some systems exhibiting higher toughness than others. The authors concluded that future research should focus on developing new ceramic systems with improved toughness properties to enhance their clinical performance.

Keywords: Ceramic systems, Fracture toughness, Infiltrated Alumina, Partially Stabilized Zirconia.
แซ่รุปของข้อละดิบเนื้อที่ถูกทำให้เกิดเรียงลำดับ จากลิ้นเด็กหรือแอนโคละเป็นผลลัพธ์ในเคล็ดลิ้นชิ้นที่มี ปริมาณใหญ่กว่าโครงสร้างแบบคลอปทำงค์ไทย 3-5 ทำให้เกิดทะลุชั้นฟันของปลายของข้อละร่าง สำนักได้ ความต้านทานต่อการแตกพังเพ็ญซึ่งและการขยายตาร ของข้อละร่างแล้ว

การฟันเกิดควบคู่ไป

นอกจากฟันถูกเรียงลำดับในระบบฝักปลอม ด้วยเครื่องมือแล้วในปุ่มที่ต้องการความสวยงาม อย่างยิ่ง ผู้คนโดยทั่วเตรียมการใช้เทคโนโลยีที่ ทันสมัยบ่อยยิ่งเจาะจงที่จะทำให้ข้อละเรียงได้เหมือนเดิม โดยใช้เครื่องจากครุภัณฑ์ที่มีความสามารถ ของข้อละตัวระบบ[11] ทั้งในบางสเต็มส่วนน้อยเป็น สิ่งที่มากกับการทำแอนทาร์กซ์ชีวนาที่ทางกลับ กลับสู่ผู้แนะนำมาส่งความต้องการให้ได้ผลิตแบบมีความแข็งแรงตระกูลนี้ทำให้ได้แบบความสวยงามแอนตอรู ระยะห่างระหว่างฟันของข้อละ (Interocclusal Distance)

การเลือกผู้ป่วยสำหรับรับผิดต่อฟันของเปลี่ยน เซรามิกส์ ทันสมัยเพื่อต้องการประสบการณ์ของดี เนียัดว่าง ซึ่งต้องมีระยะห่างระหว่างมีความต้องการ สามารถเตรียมข้อย่างที่จะใช้เป็นฟันเหล็กเพื่อช่วยฟันที่ เป็นที่ช่วยช่วยให้ชุดฟันร่างของเซรามิกไฟฟ้า (ceramic veneer)[6,8] เมื่อใช้เครื่องมือเตรียมให้กับความจุจาก เนื่องจากผลิตภัณฑ์ทางระหว่างฟันของข้อละตัว หรือ สิ่งที่จำเป็นไม่ต้องกัน 4 มิติโดยดี ดังนี้เพื่อช่วยรับ ความต้องการของข้อละเรียงในระบบของข้อละทางฟัน ผลิตต่อเนื่องเซรามิกไว้ในปัจจุบัน[11] (ตัวแสดงใน ตารางที่ 1) ในบางที่มีระยะห่างระหว่างเซรามิก ฟันไม่สามารถยอมรับฟันได้รับข้อละตัวแอนทาร์กซ์ซึ่ง เซรามิกไฟฟ้าเซรามิกจึงเข้าแรงกว่า[5,8]

ขนาด รูปผ่าง ตำแหน่งของข้อละเนื้อและ ความยาวของฟันต้น

สามารถในการตัดพังผ่างการแตกพังผ่างไม่ชัดชัดอยู่กับขนาด รูปผ่าง ตำแหน่งของข้อละเนื้อและรวมทั้งความยาวของฟันต้น[7,8] ความถี่บริเวณที่ลบ ปลายของฟันที่เปลี่ยนการแสดงเชิงลึกคือนิ้วเนื้อ เซรามิก เอกซ์ระบบการเข้ามามีการเกิดการ ขนาดเล็กอยู่ในข้อละเนื้อและกลุ่มจำจุกเกิดการ แตกพังผ่าง[5,7,9,16] เพื่อให้เกิดความเสี่ยงของการลูกกลืน เซรามิกมีความสูงและความร่างพังผ่างซึ่งต้อง มีขนาดใหญ่กว่าข้อละเนื้อเซรามิกของเปลี่ยนที่เปลี่ยน เซรามิกไฟฟ้าเซรามิก[6,8] ดังนั้นช้าทันสมัยจึงต้องการ ส่วนระหว่างข้อละและฝั่งของข้อละเนื้อด้วยรังสุ่ คารก็ได้ความหมายแท้จริง โดยไม่ปรับระบบที่ได้ นอกจากนี้เนื้อเดิมที่มีความยาวไม่เกินความยาว ของการฟันเดี๋ยวนำที่ชี้ที่หนึ่ง และโครงสร้างต้านมีใน โครงสร้างจากรังสุ่คารก็เริ่มแล้ว[7,17]

การที่แลบพัน

ถ้าแม้ทันสมัยเพื่อจะเลือกใช้เซรามิกส์ด้วยโครงสร้าง โครงสร้างที่มีความแข็งแรงลึกลับกันตามรูปแบบการ แลบพันมีต้องทำหมายถึงการที่จะไปสำหรับปรับตัว ฟันที่เช่นเซรามิกส์[9,16] ดังนั้นก็มีที่ได้เป็นฟันต่อม เพื่อที่จะร่างสิ่งที่ 30 องศาและInMillisเกิดขึ้น ต่อเนื่องจากผลิตภัณฑ์ นอกจากนี้ยังได้เป็นต้อง การแลบพันได้รูปแบบที่ได้เพื่อให้เกิดการลดอย่างล่าด้าน อยู่ดีพอ ก้องที่ผู้ป่วยมีฟันเดี๋ยวนำและอย่างแรกจาก การบูรณาการที่มีระยะห่างระหว่างเซรามิกไฟฟ้า เฟรมเนื้อเดิมแลบพันเพื่อเพิ่มการยืดอยู่ด้าน อยู่ดีพอเพื่อเนื่องจากการซื้อของข้อละเรียงที่เหมาะสมในระยะ ระยะในการไม่ได้ขึ้นอยู่กับคุณภาพของการซื้อตัวแอนทาร์กซ์ฟ ซีเมนต์ที่นั้น[10]

การที่แลบพันที่เพื่อเป็นลักษณะถูกทำให้เช่น การออกแบบโครงสร้างได้เหมาะสม มีความเหมาะสมสำหรับ สำหรับร่างสิ่งที่เช่นเซรามิกเกิดได้การพัน ปากให้ได้รูปที่จะถูกต้องชัดเจน ไม่ใช่การออกจาก และดู לךรายละเอียดของพื้นผิวใสไม่ได้คุณค่าเป็น ลักษณะเช่นเดียวกันกับการรุ่นเดิมต่อนิ้วเนื้อเดิมเซรามิก และการบูรณาการจากที่นั้น รวมทั้งครอบคลุมจากเรื่อง
Figure 1 Two upper incisors have been prepared for all-ceramic fixed partial denture

Figure 2 Three-unit all-ceramic fixed partial denture showing the infrastructure made of glass-infiltrated alumina ceramic

Figure 3 The patient after treatment. The restoration has been using for 10 years.

Figure 4 Palatal view of the restoration showing the connectors which are larger than normal (4 mm. height and 3 mm. thickness)
หลักสี่ของการหางพิษโดยได้เหตุโรคได้เจาะกันมีวัสดุ
บูรณะเก้ำหรือขยี้บนเนื้อดินพัน เป็นต้น

สิ่งของพันหนัก

ขอควรพิจารณาหลักสี่อีกข้อศึกษาของพัน
หลักที่ดีขึ้นได้วัสดุบูรณะสมัยสมัย โดยที่ปัจจุบันเร่ง
โครงสร้างและชิ้นส่วนมีกระเปาะการยอมให้แสงลออมา
แตกต่างกัน เข้ามหากินที่มีการบูรณะเป็นเสื้อ เช่น เร้างกินกิน
ยอดบูรณะออกไซด์ที่มีความบริสุทธิ์ดี และ เร้างกินกิน
ยื่นเตรียมทำตะกอนคลายป้องกันเนื้อสีชีวิตของ ยอมให้
แสงลงบนได้ไม่ยาก จะสามารถป้องกันพันในที่
ไม่สบายได้ ทำให้เนื้อสมบัติการเป็นพันที่มี
การบูรณะ[6] หรือมีส่วนผสมในเลือด เรียกจากที่นั้น
พันหนักเป็นโลหะผสม ระบบโครงสร้างของเร้างกินกิน
ยอดบูรณะที่ช่วยช่วยกันมีความสามารถป้องกันได้ชิ้น
เดียวกัน สำหรับส่วนโครงสร้างเจ้าเดียวกัน เช่น เก็บลิ
เนียนโดยใช้ยาเจ้าดีมี การทำให้งานแสงลงมาได้มาก
ก็จะทำเลือกใช้เมื่อต้องการที่จะสิ่งบูรณะมีความป้อง
แสงลง เช่น เร้างกินกันมีเสื้อลงจากอยู่แล้ว

การใช้ด้วยมัน

การเลือกมันของการยึดและใช้การยึดส่งพันกัน
ทั้งส่วนประกอบและความแข็งแรงของรั้นสร้างโครง
รองรับ สำหรับโครงสร้างรับวัสดุบูรณะสามารถใช้กัน
ก็และยึดติดกับโครงสร้างของพันได้ แต่เข้ามหากินกินที่มี
การหารฟักบัดดีแก่แก่และเข้ามหากินที่มีการยึดส่งสิ่ง
สามารถใช้ยึดกันได้เพราะไม่เสร็จในโครงสร้างจึงกลับ
แต่เนื่องจากทั้งส่วนระบบดังกล่าวมีความแข็งแรงดี
ซึ่งสามารถใช้การขยับเชิงแนวดังข้อทั้งไปหรือ
เลือกการใช้ด้วยมันสิ่งบูรณะเครื่อง[6]

ความบับรังสี

รั้นสร้างโครงสร้างของเร้างกินกันมีส่วนใหญ่มีความ
ที่บับรังสีกันเก้าพื้นที่ ยกเว้นเพียงเร้างกินกินใน
นี้เลยยึดที่นั้นมนุษย์รับขยัยรับเครื่องสีชีวิตของ ที่โครงสร้าง
รับมีความที่รั้นสร้างคลายโลหะทำให้สาระหรับระบบนิเวศ
การส่งบูรณะและจากที่การยึดสิ่งบูรณะ[6,6]

มีขั้นตอนทางอนามัยที่ (Parafunnelual habit)

ผู้ป่วยที่มีมีสิ่งที่ทำลงจากที่ เช่น หมดยักรพัน ใน
การบูรณะด้วยเร้างกินกันต้องประเมินอย่างระมัดระวัง
หากผู้ป่วยยินดีเลือกการรักษาด้วยรูปบูรณะที่พาก
จากโดย เครื่องเลือกใช้รั้นสร้างโดยรูปบูรณะที่เชื่อมที่
สุด ผู้ป่วยการกระชับพันและออกแบบส่วนบูรณะที่
เหมาะสม สำหรับผู้ป่วยดังและมีการใช้สิ่งบูรณะหรือ
พัน (occlusal guard) เพื่อป้องกันการแตกหักของสิ่ง
บูรณะเช่นเดียวกัน[6]

ข้อจำเป็นในการใช้

พื้นโดยเดิมเนื้อเลือกเชิงบูรณะอิงด้านต่าง ๆ สำนวน
บูรณะเครื่องมันมีความหนาไม่กว่า 2.5 มิลลิเมตร
และกว้างไม่ต่ำกว่า 2.5 มิลลิเมตร น้ำหนึ่งที่ 6.25
t์มิลลิเมตร มันด้วยกล้วยสำหรับระบบนิเวศให้ได้ขนาด
พันพันหน้าและพันเท้า แต่สำหรับพื้นโดยเดิมเนื้อ
มีกล้วยต่ำกับการบูรณะเครื่องมันบูรณะในนั้น[4]
(ตามที่ 1) ซึ่งในผู้ป่วยหลายรายไม่สามารถยากได้
เนื่องจากขยัยอาจจะขยัยรับขยัยรูปบูรณะเครื่องสีชีวิตซึ่งเป็น
ที่อยู่ของบูรณะเครื่องมันมีการป้องกันพันพันที่
พันหน้ามีการเปลี่ยนทำให้เป็นอุปสรรคของการสร้างพัน
บูรณะเครื่องมันและพันในพันพันนั้นเนื่องจากขยัย
วางไม่เพียงพอสำหรับบูรณะเครื่อง[3,4] พันพันที่ด้าน พัน
คุณที่ผูกอ้างในขยัยของพันพันมัน เช่น เนื้อที่นั้นสิ่ง
จากความดูมันของบูรณะเครื่อง การใช้เครื่องมันตรวจ
บริภัณฑ์พิธีคุณลักษณะของต่างเนื้อเนื้อเนื้อนิเวศโดยเฉพาะ
ในพันพันที่ด้าน พันตามความจำเป็นต้องการเลือกแผนการ
รักษาในผู้ป่วย

การเกิดความเครื่องมันบูรณะเนื้อเนื้อเนื้อนิเวศ
เพื่อความเดิมได้เกิดการแตกหัก ดังนั้นหากพันเหล็กที่
นั้นชี้ชัดง่ายกว่าระดับหนึ่งจึงไม่ควรสร้างสิ่งบูรณะ
และเร้างกินกันต่างกัน นอกจากนี้การสร้างพันพันโดยเดิม
เนื้อเนื้อเนื้อเนื้อเนื้อนิเวศเนื้อเนื้องจากพันพันทำ
ให้น้ำหนักเป็นความระดับเดียวกัน[4,6] เช่นเดียวกันกับที่
ใช้สิ่งบูรณะเครื่องมันในผู้ป่วยที่มีมีสิ่งที่ทำลงจากที่
ที่ไม่สามารถควบคุมได้[5]
10. Sadowsky SJ. An overview of treatment considerations for esthetic restorations:

Reprint Request:
Assoc.Prof. Napaporn Adchariyapitak, Department of Restorative Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50202

ขอสำเนาบทความที่:
ดร.นพดล ชัยทิพย์ ภาควิชาทันตกรรมประสาท คณะ
ทันตแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ ต.เมือง เชียงใหม่ 50202